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The Planck scale

Classical gravity with matter,

Now introduce quantum corrections for matter

Comparing components,

h: T̂µ⌫ :i ⇠ ~R2gµ⌫ + . . .

Tµ⌫ = (8⇡G)�1

✓
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R�1 ⇠ G~ $ ⇢ ⇠ ⇢P = M4
PTµ⌫ ⇡ h: T̂µ⌫ :i )

We can neglect quantum effects of curvature below Planck scale.
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Outline

1) When does QFTCS become macroscopic?

2) Application: compact stars



Derivation:

Trace Anomaly

QFT in curved spacetime becomes relevant  
much before the Planck scale



Trace anomaly

QFT curved space:

Tµ⌫ = T (m)
µ⌫ + T (A)

µ⌫

break conformal  
symmetry classically

no explicit dependence gµ⌫

anomaly

explicitly dependent gµ⌫

‘quantum’‘classical’

Weyl anomaly:

Z
E = �c, a > 0T (A) = cW 2 � aE

T = T (m) + T (A)



Assumptions

(A1) Semi-classical approximation is valid

Gµ⌫ = 8⇡G
⇣
T (m)
µ⌫ + T (A)

µ⌫

⌘

(A2) Matter equation of state is conformal at leading order

(A3) Individual components

|T (A)
µ⌫ | ⌧ |T (m)

µ⌫ |

T (m) = �⇢+ 3p ⇡
m4⌧⇢⌧⇢P

�m4(1�↵)⇢↵

Much below the Planck density ⇢P = M4
p :

↵ < 1



Evaluation

Restrict to regions where W 2 ⇡ 0

E = W 2 + 2

✓
R2

3
�Rµ⌫R

µ⌫

◆
Ricci decomposition

Evaluate on background:

R = �GT (m) = �Gm4(1�↵)⇢↵

T (A) = �aE ⇠ G2⇢2Punchline

Rµ⌫R
µ⌫ = G2T (m)µ⌫T (m)

µ⌫ + . . .+R2

= G2(⇢2 + 3p2) + . . .+G2⇢2↵ ⇡ G2⇢2



Anomalous field equations

Include backreaction on trace of semi-classical equations:

R = �8⇡G
⇣
T (m) + T (A)

⌘

Replacing all of this we find:

R ⇡ M�2
p

⇣
m4(1�↵)⇢↵ �M�4

p ⇢2
⌘

⇢c ⇠ (m/Mp)
4(1�↵)
2�↵ ⇢p⇢

⇢c

R

⌧ ⇢p

e.g. for electrons ⇢c ⇠ 10�30⇢p



If you ask: when does

the answer is

If you ask: when does |T (A)| ⇠ |T (m)|

⇢c ⇠ (m/Mp)
4(1�↵)
2�↵ ⇢p ⌧ ⇢p

|T (A)
µ⌫ | ⇠ |T (m)

µ⌫ |

the answer is* ⇢ ⇠ ⇢p

Physical implications?

Summary (so far)



Application:

Compact stars

A regime where the trace anomaly  
becomes interesting is the Buchdahl limit



Buchdahl’s Theorem      [Buchdahl ‘59]

Static, spherically symmetric isotropic perfect fluid

ds2 = �f(r)dt2 + h(r)dr2 + r2d⌦2

Tµ
⌫ = diag(�⇢, p, p, p)

Then, assuming nothing about the EOS but only

M

rb
⇢ > 0 , @r⇢  0 , Gµ⌫ = 8⇡GTµ⌫

) rb
GM

� 9

4
f(0) � 0

local global



Tortoise coordinate

dr⇤
dr

=
p

h(r)/f(r)

Exterior r⇤ = r + 2M log (r/2M � 1)

Black hole: r⇤(r ! 2M) ! �1

Regular star: 
dr⇤
dr

=
1p
f(0)

+O(r) f(0) ! 0

Buchdahl limit



• Non-relativistic: p ⇠ ⇢5/3

• High energy ⇢� 3p = m2p⇢

At leading order it behaves like a CFT

Example: cold fermions

• Intermediate: misleadingly called ‘ultra-relativistic’ p ⇠ ⇢4/3

Density of states

dN
d3x d3p

=
g

h3
f(x, p)

Low temperature

f =
⇣
e�(E�µ) + 1

⌘�1



Since quantum is identically conserved rµT
(A)µ⌫ = 0

rµT
(m)µ⌫ = 0

f 0

f
= �2

p0

p+ ⇢

Integrate inside the sphere using Fermi-Dirac

Buchdahl limit  
(background)

f(0)

f(rb)
⇠ m2

p
⇢(0)

log
f(rb)

f(0)
= �2

Z p(rb)=0

p(0)!1

dp

p+ ⇢
⇠ 1

2
log

p(0)

m4



Buchdahl limit and anomaly

ds2 = �f(r)dt2 + h(r)dr2 + r2d⌦2

M

rb

For the static, spherically symmetric isotropic perfect fluid

T (m)µ
⌫ = diag(�⇢, p, p, p)

h(0) = 1 , f 0(0) = 0 = h0(0)

Regularity at the center requires

) W 2(0) = 0 Wµ⌫⇢�(0) 6= 0

The trace anomaly results are valid at the center



Wave equation

Consider a probe field propagating in this curved background

Massless minimally coupled scalar:

�@2
r⇤u+ V (r⇤)u = !2u

dr⇤
dr

=
p

h(r)/f(r)

⇤� = 0

� =
u(r)

r
Y `
m(✓,')e�i!t

ds2 = �f(r)dt2 + h(r)dr2 + r2d⌦2
2

V` =
f

2rh

✓
f 0

f
� h0

h

◆
+

`(`+ 1)

r2
f(r)

V`=0(0) = �1

6
f(0)R(0)Regularity at the center:



Scalar perturbations

~ wmin
2

r<rc

rc<r

interior exterior

rb

VÆ0

~ HGML-2

r

V{=0HrL

V`=0(0) = �1

6
f(0)R(0) ⇠ �m2

p
⇢
M�2

P

�
m2p⇢�M�4

P ⇢2
�

�@2
r⇤u+ V (r⇤)u = !2u

We see the effect of the anomaly on the motion of scalar

m2

MP
⇠ 10�2s�1

The potential becomes  
less attractive 

Characteristic frequencies are measurable 
despite the very high energies involved



Conclusions

The effects of the trace anomaly become macroscopic at

Outlook

• Spin perturbations

• Gravitational collapse

↵ < 1
⇢c ⇠ (m/MP )

4(1�↵)
2�↵ ⇢P ⌧ ⇢P

For scalar perturbations of stars close to Buchdahl limit, the 
anomaly controls the low frequency spectrum, and the object 
becomes ‘less attractive’. 

and the curvature becomes negative R < 0

m ⌧ MP





Spectrum of quasi-bound states in the 
Buchdahl limit                     

Gravitational potential

Schwarzschild constant density sphere

�30 �20 �10 0 10
0

0.05

0.1

0.15

r⇤/(GM)

V
/(
G
M

)2

Chandrasekhar-Ferrari ´92                           IR-Tomaselli -23

spin 0

spin 2

V`(r)

In QFT the vacuum cannot be ‘turned off ’


