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The Planck scale

Classical gravity with matter,

~ R
T,, = (87G)~! (RW -5 gW>

Now introduce quantum corrections for matter

A

(: Ty ) ~hR*gu + ...

Comparing components,

T~ {(T,:) = R'~Gh & p~pp=Mp

We can neglect quantum effects of curvature below Planck scale.
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Outline

|) When does QFTCS become macroscopic!?

2) Application: compact stars



Derivation:

Trace Anomaly

QFT in curved spacetime becomes relevant
much before the Planck scale



Trace anomaly

QFT curved space:
Ly = T;ST) T T/Sf)

/ \

‘classical’ ‘quantum’

break conformal anomaly
symmetry classically

no explicit dependence 9uv explicitly dependent 9uv
Weyl anomaly: 7 = 7™ 4 7(4)

7AW — W2 — oE c,a >0 /E:X



Assumptions

Much below the Planck density pp = M;L :

(Al) Semi-classical approximation is valid
G = 87G (Tm + T;§>)
(A2) Matter equation of state is conformal at leading order

T(m) = —p+ 3p ~ —m4(1_a)pa a <1
mi<LpLpp

(A3) Individual components

A m
TV < [T



Evaluation

Restrict to regions where W?2=~0

Ricci decomposition E=W?+2 (
Evaluate on background:
R = _GT(m) _ _Gm4(1—a)pa

R, R" = G*PT"™m () + 4+ R?
:GQ(,OQ—I—3]92)—I——I—G2,020‘ %GQ/OQ

Punchline T = —gF ~ G?p?



Anomalous field equations

Include backreaction on trace of semi-classical equations:

R = -8nG (T(m) + T(A))

Replacing all of this we find:

R
Ra M2 <m4(1—a)pa . M_4p2)

p

4(1— )

P pe ~ (m/Mp) 2= pp, < Pp

Pe

e.g. for electrons  pc ~ 107p,



Summary (so far)

If you ask: when does [T\ ~ |T{7")

the answer is* P~ Pp

Physical implications?



Application:

Compact stars

A regime where the trace anomaly
becomes interesting is the Buchdahl limit



Buchdahl’s Theorem
Static, spherically symmetric isotropic perfect fluid
T}, = diag(—p,p, p,p)
ds® = — f(r)dt* + h(r)dr* + r*dQ?
Then, assuming nothing about the EOS but only

p>0, 0p<L0, G, =8rGT,,




Tortoise coordinate

T RO

Exterior re =74+ 2Mlog (r/2M — 1)

Black hole: r«(r — 2M) — —o0

Buchdahl limit

Regular star: CZ: = ;(()) - O(r) f(0) =0




Example: cold fermions

Density of states

d;gg% _ % f(z,p) = (6B(E—u) n 1)—1
Low temperature
* Non-relativistic: D~ /05/3
4/3

* Intermediate: misleadingly called ‘ultra-relativistic’c p ~ p

* High energy p—Op = m2\f/)

At leading order it behaves like a CFT



Since quantum is identically conserved VMT(A)W
f/ p/
v, T(muev — I _ _9
" f p+p

Integrate inside the sphere using Fermi-Dirac

log f(rp) :_2/19(”’)_0 dp 1. p(0)
p

— ~ —log —+
7 (0) ()0 P+p 2 = mt

f0) = m? Buchdahl limit
f(rp) p(0) (background)

=0



Buchdahl limit and anomaly

For the static, spherically symmetric isotropic perfect fluid

T™E = diag(—p, p, p, D)

ds® = —f(r)dt* + h(r)dr® + r*dQ?

Regularity at the center requires

- WZ(O) =0 W,ul/pa(o) # 0

The trace anomaly results are valid at the center



Wave equation

Consider a probe field propagating in this curved background

Massless minimally coupled scalar: ® =0

ds® = —f(r)dt* + h(r)dr® + r*d;

—8f*u + V(T*)u — w?u b — u(r) Y,,f;(e, gp)e_iwt
/ / d .
Vi= 57 (5 - 5) + S0 = = \/h(r)/ (1)

Regularity at the center: Vi—o(0) = —%f(O)R(O)



Scalar perturbations

We see the effect of the anomaly on the motion of scalar

2

Vicol0) = = F(O)R(0) ~ UM (= M)

Vi=o(N)

~ (GM)™
The potential becomes
less attractive

2 2
R =0, u+ V(ri)u = wu
interior exterior
m? 1025~ Characteristic frequencies are measurable

Mp despite the very high energies involved



Conclusions

The effects of the trace anomaly become macroscopic at

41— ) 84 < 1
pe ~ (m/Mp) 2=> pp < pp

m<<Mp

and the curvature becomes negative R < (

For scalar perturbations of stars close to Buchdahl limit, the
anomaly controls the low frequency spectrum, and the object
becomes ‘less attractive’.

Outlook
e Spin perturbations

e Gravitational collapse






Gravitational potential
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Spectrum of quasi-bound states in the
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In QFT the vacuum cannot be ‘turned off’



